Package: vimp 2.3.3
vimp: Perform Inference on Algorithm-Agnostic Variable Importance
Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (JASA, 2021), and Williamson and Feng (ICML, 2020).
Authors:
vimp_2.3.3.tar.gz
vimp_2.3.3.zip(r-4.5)vimp_2.3.3.zip(r-4.4)vimp_2.3.3.zip(r-4.3)
vimp_2.3.3.tgz(r-4.4-any)vimp_2.3.3.tgz(r-4.3-any)
vimp_2.3.3.tar.gz(r-4.5-noble)vimp_2.3.3.tar.gz(r-4.4-noble)
vimp_2.3.3.tgz(r-4.4-emscripten)vimp_2.3.3.tgz(r-4.3-emscripten)
vimp.pdf |vimp.html✨
vimp/json (API)
NEWS
# Install 'vimp' in R: |
install.packages('vimp', repos = c('https://bdwilliamson.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bdwilliamson/vimp/issues
- vrc01 - Neutralization sensitivity of HIV viruses to antibody VRC01
machine-learningnonparametric-statisticsstatistical-inferencevariable-importance
Last updated 12 months agofrom:b5e8382560. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | NOTE | Nov 08 2024 |
R-4.5-linux | NOTE | Nov 08 2024 |
R-4.4-win | NOTE | Nov 08 2024 |
R-4.4-mac | NOTE | Nov 08 2024 |
R-4.3-win | NOTE | Nov 08 2024 |
R-4.3-mac | NOTE | Nov 08 2024 |
Exports:average_vimbootstrap_secheck_fitted_valuescheck_inputscreate_zcv_vimest_predictivenessest_predictiveness_cvestimateestimate_nuisancesextract_sampled_split_predictionsget_cv_sl_foldsget_full_typeget_test_setmake_foldsmake_kfoldmeasure_accuracymeasure_anovameasure_aucmeasure_average_valuemeasure_cross_entropymeasure_deviancemeasure_msemeasure_r_squaredmerge_vimpredictiveness_measureprocess_arg_lstrun_slsample_subsetsscale_estsp_vimspvim_icsspvim_sevimvimp_accuracyvimp_anovavimp_aucvimp_civimp_deviancevimp_hypothesis_testvimp_regressionvimp_rsquaredvimp_se
Dependencies:bitopsbootcaToolsclicodetoolscvAUCdata.tabledplyrfansiforeachgamgenericsgluegplotsgtoolsiteratorsKernSmoothlifecyclemagrittrMASSnnlspillarpkgconfigR6rlangROCRSuperLearnertibbletidyselectutf8vctrswithr
Introduction to vimp
Rendered fromintroduction-to-vimp.Rmd
usingknitr::rmarkdown
on Nov 08 2024.Last update: 2022-12-09
Started: 2020-06-23
Types of VIMs
Rendered fromtypes-of-vims.Rmd
usingknitr::rmarkdown
on Nov 08 2024.Last update: 2021-08-03
Started: 2020-06-23
Using precomputed regression function estimates in vimp
Rendered fromprecomputed-regressions.Rmd
usingknitr::rmarkdown
on Nov 08 2024.Last update: 2023-12-14
Started: 2020-06-23
Variable importance with coarsened data
Rendered fromipcw-vim.Rmd
usingknitr::rmarkdown
on Nov 08 2024.Last update: 2022-07-26
Started: 2022-03-31